Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 908346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979490

RESUMO

Broad application of antibiotics gave rise to increasing numbers of antibiotic resistant bacteria. Therefore, effective alternatives are currently investigated. Bacteriophages, natural predators of bacteria, could work as such an alternative. Although phages can be highly effective at eliminating specific bacteria, phage resistance can be observed after application. The nature of this resistance, however, can differ depending on the phage. Exposing Erwinia amylovora CFBP 1430, the causative agent of fire blight, to the different phages Bue1, L1, S2, S6, or M7 led to transient resistance. The bacteria reversed to a phage sensitive state after the phage was eliminated. When wild type bacteria were incubated with Y2, permanently resistant colonies (1430 Y2R ) formed spontaneously. In addition, 1430 Y2R revealed cross-resistance against other phages (Bue1) or lowered the efficiency of plating (L1, S2, and S6). Pull down experiments revealed that Y2 is no longer able to bind to the mutant suggesting mutation or masking of the Y2 receptor. Other phages tested were still able to bind to 1430 Y2R . Bue1 was observed to still adsorb to the mutant, but no host lysis was found. These findings indicated that, in addition to the alterations of the Y2 receptor, the 1430 Y2R mutant might block phage attack at different stage of infection. Whole genome sequencing of 1430 Y2R revealed a deletion in the gene with the locus tag EAMY_2231. The gene, which encodes a putative galactosyltransferase, was truncated due to the resulting frameshift. The mutant 1430 Y2R was monitored for potential defects or fitness loss. Weaker growth was observed in LB medium compared to the wild type but not in minimal medium. Strain 1430 Y2R was still highly virulent in blossoms even though amylovoran production was observed to be reduced. Additionally, LPS structures were analyzed and were clearly shown to be altered in the mutant. Complementation of the truncated EAMY_2231 in trans restored the wild type phenotype. The truncation of EAMY_2231 can therefore be associated with manifold modifications in 1430 Y2R , which can affect different phages simultaneously.

2.
Environ Microbiol ; 24(8): 3436-3450, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35289468

RESUMO

Bacteriophages are highly selective in targeting bacteria. This selectivity relies on the specific adsorption of phages to the host cell surface. In this study, a Tn5 transposon mutant library of Erwinia amylovora, the causative agent of fire blight, was screened to identify bacterial receptors required for infection by the podovirus S6. Phage S6 was unable to infect mutants with defects in the bacterial cellulose synthase operon (bcs). The Bcs complex produces and secretes bacterial cellulose, an extracellular polysaccharide associated with bacterial biofilms. Deletion of the bcs operon or associated genes (bcsA, bcsC and bcsZ) verified the crucial role of bacterial cellulose for S6 infection. Application of the cellulose binding dye Congo Red blocked infection by S6. We demonstrate that infective S6 virions degraded cellulose and that Gp95, a phage-encoded cellulase, is involved to catalyse the reaction. In planta S6 did not significantly inhibit fire blight symptom development. Moreover, deletion of bcs genes in E. amylovora did not affect bacterial virulence in blossom infections, indicating that sole application of cellulose targeting phages is less appropriate to biologically control E. amylovora. The interplay between cellulose synthesis, host cell infection and maintenance of the host cell population is discussed.


Assuntos
Bacteriófagos , Erwinia amylovora , Podoviridae , Bacteriófagos/genética , Celulose/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Doenças das Plantas/microbiologia , Podoviridae/genética
3.
Arch Virol ; 164(3): 819-830, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673846

RESUMO

Bacteriophages represent a promising alternative for controlling pathogenic bacteria. They are ubiquitous in the environment, and their isolation is usually simple and fast. However, not every phage is suitable for biocontrol applications. It must be virulent (i.e., strictly lytic), non-transducing, and safe. We have developed a method for identifying selected types of virulent phages at an early stage of the isolation process to simplify the search for suitable candidates. Using the major capsid protein (MCP) as a phylogenetic marker, we designed degenerate primers for the identification of Felix O1-, GJ1-, N4-, SP6-, T4-, T7-, and Vi1-like phages in multiplex PCR setups with single phage plaques as templates. Performance of the MCP PCR assay was evaluated with a set of 26 well-characterized phages. Neither false-positive nor false-negative results were obtained. In addition, 154 phages from enrichment cultures from various environmental samples were subjected to MCP PCR analysis. Eight of them, specific for Salmonella enterica, Escherichia coli, or Erwinia amylovora, belonged to one of the selected phage types. Their PCR-based identification was successfully confirmed by pulsed-field gel electrophoresis of the phage genomes, electron microscopy, and sequencing of the amplified mcp gene fragment. The MCP PCR assay was shown to be a simple method for preliminary assignment of new phages to a certain group and thus to identify candidates for biocontrol immediately after their isolation. Given that sufficient sequence data are available, this method can be extended to any phage group of interest.


Assuntos
Bacteriófagos/isolamento & purificação , Proteínas do Capsídeo/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Erwinia amylovora/virologia , Escherichia coli/virologia , Filogenia , Salmonella enterica/virologia , Virulência
4.
Front Microbiol ; 10: 2949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998258

RESUMO

Bacteriophages of the Podoviridae family often exhibit so-called depolymerases as structural components of the virion. These enzymes appear as tail spike proteins (TSPs). After specific binding to capsular polysaccharides (CPS), exopolysaccharides (EPS) or lipopolysaccharide (LPS) of the host bacteria, polysaccharide-repeating units are specifically cleaved. Finally, the phage reaches the last barrier, the cell wall, injects its DNA, and infects the cell. Recently, similar enzymes from bacteriophages of the Ackermannviridae, Myoviridae, and Siphoviridae families were also described. In this mini-review the diversity and function of phage encoded CPS-, EPS-, and LPS-degrading depolymerases is summarized. The function of the enzymes is described in terms of substrate specificity and applications in biotechnology.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30533868

RESUMO

Phages vB_EamP-S2 (S2) and vB_EamM-Bue1 (Bue1) infect the plant pathogen Erwinia amylovora. S2 has a genome size of 45,495 bp and belongs to the genus SP6virus. The genome size of Bue1, related to Salmonella phage Vil, is 164,037 bp. Both phages possess a depolymerase enzyme, a frequent feature of E. amylovora phages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...